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Abstract
Posttransplant high-dose cyclophosphamide (PTCY) has been increasingly used as graft-versus-host disease (GVHD)
prophylaxis after HLA-haploidentical or matched hematopoietic stem cell transplantation (SCT). However, PTCY alone is
insufficient and requires additional immunosuppressants such as calcineurin inhibitors. In the current study, we evaluated
effects of a novel GVHD prophylaxis with PTCY in combination with short-term KRP203, a selective agonist of
sphingosine-1-phosphate receptor 1 that regulates egress of lymphocytes from the secondary lymphoid organs (SLOs) in
mice. Short-term oral administration of KRP203 alone induced apoptosis of donor T cells in the SLOs and ameliorated
GVHD. Administration of KRP203 significantly preserved graft-versus-leukemia effects compared to cyclosporin. A
combination of KRP203 on days 0 to +4 and PTCY on day +3 synergistically suppressed donor T-cell migration into the
intestine and skin, and ameliorated GVHD more potently than PTCY alone. A combination of short-term KRP203 and
PTCY is a promising novel calcineurin-free GVHD prophylaxis in HLA-haploidentical SCT.

Introduction

Posttransplant high-dose cyclophosphamide (PTCY) has
been increasingly used as GVHD prophylaxis in HLA-
haploidentical hematopoietic stem cell transplantation (SCT)
[1–6] and HLA-matched SCT [7]. Rationale of PTCY has
been developed in mouse models of skin allograft several
decades ago; PTCY selectively eliminates alloreactive T cells
activated early after SCT, while preserving bystander T cells
[8–10]. Recent studies further suggest that T-cell dysfunction
and active suppression mediated by regulatory T cells
(Tregs) play a critical role in GVHD prophylaxis with PTCY

[11–13]. However, PTCY alone is not sufficient for GVHD
prophylaxis, requiring administration of additional immuno-
suppressants such as calcineurin inhibitors (CNIs) and
mycophenolate mofetil (MMF) following PTCY [1, 2, 14].
Chronic administration of CNIs is a risk for infections and
chronic kidney disease, and disturbs reconstitution and sur-
vival of Tregs by inhibiting IL-2 signaling, that may blunt
anti-GVHD effects of PTCY [13, 15–17]. Development of
CNI-free GVHD prophylaxis is thus warranted.

Sphingosine-1-phosphate (S1P) is a metabolite of
sphingolipid, a component of biomembrane. S1P interacts
with five related G-protein-coupled receptors termed S1P
receptor types 1 to 5 (S1PR1-5). S1P modulates cellular
proliferation, survival, and migration [18]. FTY720 (fin-
golimod) is a multi-S1PR inhibitor of S1PR1 and S1PR3–5

[19, 20]. FTY720 sequestrates T cells within the secondary
lymphoid organs [21, 22]. Preclinical studies showed that
administration of FTY720 ameliorated GVHD by inhibiting
donor T-cell infiltration to GVHD target organs and facili-
tated rapid contraction of donor T-cell pool in association
with activation-induced cell death [23, 24].

However, FTY720 exerts unique adverse effects,
including bradycardia, hypo/hypertension, respiratory
symptoms, macular edema, and renal impairment per its
affinity to S1PR3 [25]. These adverse effects might be
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accelerated in inflammatory condition during GVHD.
Although endothelial cells and cardiomyocytes express both
of S1PR1 and S1PR3, T lymphocytes express only S1PR1

[26]. KRP203 acts specifically on S1PR1 with a potentially
milder toxicity profile and thus may be a promising agent to
serve as a substitute of CNIs that is used in combination
with PTCY [27, 28]. In the current study, we studied a role
of a novel GVHD prophylaxis with PTCY in combination
with short-term KRP203 using murine models of GVHD.

Materials and methods

Mice

Female B6 (H-2b, CD45.2), Ly5a-B6 (H-2b, CD45.1), and
B6D2F1 (H-2b/d, CD45.2) mice were purchased from CLEA
Japan (Tokyo, Japan). Mice were 8–12 weeks of age at
transplant and maintained in specific pathogen-free environ-
ment. Recipient mice were allocated randomly for each
experimental group, ensuring the mean body weight in each
group was similar. All animal experiments were performed in
a nonblinded fashion and under the auspices of the Institu-
tional Animal Care and Research Advisory Committee.

SCT

B6D2F1 recipients were lethally irradiated with 13.5 Gy
total body irradiation, split into two doses with 4-h interval,
followed by i.v. injection with 5 × 106 BM cells and 10 ×
106 splenocytes from MHC-haploidentical B6 or syngeneic
B6D2F1 donors on day 0.

Reagents

CY (Shionogi, Osaka, Japan) was dissolved in PBS at a
concentration of 5 mg/ml and intraperitoneally (i.p.) injec-
ted at 50 mg/kg on day +3 after SCT. KRP203 (Novartis
Pharma AG, Basel, Switzerland) dissolved in sterile water
was orally administered at a dose of 1–3 mg/kg.

Evaluation of GVHD

Survival was monitored daily and clinical GVHD was
assessed by using GVHD scoring system with five para-
meters [29]. For pathological analysis, tissue samples were
fixed in 10% formalin, embedded in paraffin, sectioned, and
stained with hematoxylin and eosin (H&E). Acute GVHD
pathology was assessed using a semiquantitative scoring
system in the small and large intestines, liver, and skin [30].
Gut pathological scores were sum of scores in the small
intestine and colon. Pictures from tissue sections were
taken at room temperature using a digital camera (DP72;

Olympus, Tokyo, Japan) mounted on a microscope (BX51;
Olympus).

Evaluation of GVL effects

Lethally irradiated B6D2F1 recipients were transplanted with
purified T cells and T-cell depleted (TCD)-BM cells from B6
donors. Purification of T cells and TCD was performed using
pan-T-cell Microbeads (Miltenyi Biotec, Auburn, CA) and anti-
CD90-MicroBeads (Miltenyi Biotec), respectively, and the
AutoMACS Pro Separator (Miltenyi Biotec) was used follow-
ing the manufacturer’s instructions. A total of 5 × 104 P815-
luc+ cells were injected to mice on day 0 of SCT. Following
SCT, in vivo bioluminescence imaging (BLI) was conducted
weekly to evaluate GVL effects. Mice were subcutaneously
injected with 500 μg d-luciferin (Promega, Madison, WI), and
in vivo imaging was done 5min later. Luciferase+ cells were
detected using IVIS Imaging System ver. 4.3.1 (Perkin Elmer,
Waltham, MA). Light emission is presented as photons
per second per square centimeter per steer radiant (ph/s/cm2/sr).

Flow cytometric analysis

Cell suspension was prepared from the liver, colon, and skin,
as previously shown [31, 32]. Monoclonal antibodies (mAbs)
used were FITC-, PE-, PECy7-, PerCP-, APC-, or APCCy7-
conjugated anti-mouse CD4, CD8, CD45, CD45.1, TCRβ,
H-2d, and FoxP3 purchased from BD Pharmingen (San
Diego, CA), eBioscience (San Diego, CA), or Biolegend
(San Diego, CA) (Supplementary Table 1). Apoptotic cells
were stained with Annexin V-FITC. FoxP3 staining kit
(eBioscience) was used for intracellular Foxp3 staining. Dead
cells were determined based on the positivity of DAPI
(Molecular Probes Inc., Eugene, OR). Cells were analyzed
using a FACSCantoII (BD Bioscience, Tokyo, Japan) and
FlowJo software (Tree Star, OR).

Cytometric beads array (CBA)

Plasma cytokine levels were determined using BD CBA
Mouse Soluble Protein Flex Sets (BD Biosciences) and
FACSCantoII (BD Bioscience).

Statistical analysis

Experiments were repeated at least twice to obtain eight or
more samples for each group. Mann–Whitney U tests were
used to compare data. Kaplan–Meier product limit method
was used to obtain survival probability and the log-rank test
was applied to compare survival curves. Cumulative inci-
dence curve was used to obtain cumulative leukemia deaths
and the Gray’s test was applied to compare cumulative leu-
kemia deaths curves. Analyses were performed using
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GraphPad Prism 6 software (GraphPad Software, San Diego,
CA). P < 0.05 was considered statistically significant.

Results

Short-term KRP203 induces earlier contraction of
donor T cells in LNs and ameliorates GVHD

Lethally irradiated B6D2F1 (H-2b/d, CD45.2+) mice were
transplanted with 5 × 106 bone marrow (BM) cells and 10 ×

106 splenocytes from MHC-haploidentical B6 (H-2b,
CD45.2+) donors on day 0. Syngeneic controls were B6 (H-
2b, CD45.2+) mice transplanted with grafts from congenic
B6-Ly5a (H-2b, CD45.1+) donors. KRP203 was orally
administered at a dose of 1 mg/kg daily from day 0. Flow
cytometric analysis of the mesenteric lymph nodes (MLNs)
showed that donor T-cell expansion was significantly
greater on both day +4 and day +7 after allogeneic SCT
than that in syngeneic controls (Fig. 1a, b). There was a
trend toward enhanced donor T-cell expansion on day 4 in
KRP203-treated mice, while KRP203 induced earlier
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Fig. 1 KRP203 enhances apoptosis of donor T cells after allogeneic
SCT and ameliorates GVHD. a–e Lethally irradiated B6D2F1 mice
were transplanted with 10 × 106 splenocytes and 5 × 106 BM cells from
MHC-haploidentical B6 mice. KRP203 at a dose of 1 mg/kg (n= 8) or
diluent (n= 8) was orally administered daily from day 0. Syngeneic
controls were B6 recipients transplanted from B6-Ly5a donors (n= 3).
Absolute numbers of H-2Kd-TCRβ+ donor T cells in allogeneic ani-
mals or CD45.1+CD45.2-TCRβ+ donor T cells in syngeneic controls
were determined in the MLNs on day +4 (a) and day +7 (b) after
SCT. Data from two independent experiments were combined and
shown as mean ± SEM. c Plasma levels of IFN-γ on day +7 are shown

as mean ± SEM (n= 9/group for allogeneic mice treated with diluent
or KRP, and n= 3 for syngeneic controls). Cells harvested from the
MLNs on day +6 posttransplant were stained with fluorescent-labeled
Annexin V. Representative plots of Annexin V staining of donor
T cells (d) and proportions of DAPI− and Annexin V+ apoptotic cells
among donor T cells (e). Data from two independent experiments are
combined and shown as mean ± SEM (n= 10 for allogeneic mice
treated with diluent or KRP and n= 3 for syngeneic control group).
f, g SCT was performed as Fig. 1a. KRP203 (1 mg/kg, n= 11) or
diluent (n= 11) was orally administered daily from day 0 to day +6.
Survival (f) and clinical scores (g, mean ± SD)
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contraction of a donor T-cell pool with significantly less
levels of plasma IFN-γ on day +7 compared to allogeneic
controls (Fig. 1c). We evaluated whether the KRP203-
mediated earlier contraction of a donor T-cell pool on day
+7 could be associated with an increase in donor T-cell
apoptosis. Frequencies of DAPI− and Annexin V+ apop-
totic donor T cells on day +6 were significantly higher in
the MLNs of KRP203-treated animals than those in allo-
geneic controls (Fig. 1d, e). These results suggest that
KRP203 facilitates sequestration and apoptosis of donor
T cells in the MLNs after allogeneic SCT, as has been
shown in our previous study of FTY720 [24]. Administra-
tion of KRP203 from day 0 to day +6 significantly reduced
morbidity and mortality of GVHD (Fig. 1f, g).

GVL effects were preserved in KRP203-treated
recipients

Next, we tested impacts of KRP203 on graft-versus-
leukemia (GVL) effects using in vivo BLI after MHC-
haploidentical SCT. Lethally irradiated B6D2F1 mice were
transplanted with 4 × 106 TCD-BM cells and 2 × 106 pur-
ified T cells from B6 donors together with 5 × 104 P815-
luc+ cells on day 0, followed by oral administration of
KRP203 at a dose of 3 mg/kg daily from day 0 to day +28.
In controls, cyclosporin (CSP) was orally administered
daily during the same period at a dose of 50 mg/kg, as

previously described [16, 33]. In vivo BLI performed
weekly after SCT demonstrated that all mice receiving
TCD-BM alone died with massive proliferation of P815-
luc+. Although allogeneic mice mounted potent GVL
effects, all the mice succumbed to severe GVHD without
any evidence of tumor growth (Fig. 2a–c). Remarkably,
GVL effect was much potent in the KRP203-treated animals
than that in the CSP-treated mice (Fig. 2b), resulted in
significantly improved overall survival (Fig. 2c).

A combination of short-term KRP203 and PTCY is
superior to PTCY alone in ameliorating GVHD

Next, we evaluated whether addition of KRP203 could
reduce GVHD in combination with PTCY. We found that
cyclophosphamide (CY) i.p. injected at a dose of 100 mg/kg
on day +3 significantly reduced GVHD mortality than
50 mg/kg of CY (Fig. 3a). In the following experiments, we
utilized CY at a dose of 50 mg/kg to mimic clinical HLA-
haploidentical SCT, where PTCY alone was not sufficient
to prevent GVHD [3, 34].

We then evaluated whether addition of short-term (day
+0 to day +4) or long-term administration (day +0 to day
+28) of KRP203 could improve effects of PTCY. Short-
term administration early after SCT was enough to ame-
liorate GVHD in combination with PTCY (Supplementary
Fig. 1). Although GVHD was severe in allogeneic controls
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Fig. 2 A combination of short-term KRP203 and PTCY spares sig-
nificant GVL effects after allogeneic SCT. a–c Lethally irradiated
B6D2F1 mice were transplanted with 4 × 106 TCD-BM with or without
2 × 106 T cells from B6 donors, together with 5 × 104 P815-luc cells on
day 0. KRP203 (3 mg/kg) or CSP (50mg/kg) was orally administered

from day 0 to day +28. Tumor growth in the recipients was weekly
monitored in vivo BLI. Representative images of BLI (a), cumulative
leukemia death (b), and survival curves (c) after SCT are shown (TCD-
BM, n= 10; diluent, n= 10, KRP, n= 10; CSP, n= 3). *p < 0.05,
**p < 0.01, ***p < 0.005

790 E. Yokoyama et al.



with 100% mortality by day +30 after SCT, CY alone again
significantly reduced morbidity and mortality of GVHD
(Fig. 3b, c). A combination of CY and KRP203 further
reduced morbidity and mortality of GVHD compared to CY
alone (Fig. 3b, c). We also evaluated GVHD pathology of
the gut, liver, and skin 4 weeks after SCT. Pathology of
allogeneic animals showed crypt apoptosis with mono-
nuclear cell (MNC) infiltration in the gut, MNC infiltration
to the portal triads and bile ducts accompanied by coagu-
lative necrosis of hepatocytes in the liver, and MNC infil-
tration with loss of fat layer in the skin (Fig. 4a). PTCY
alone significantly reduced GVHD pathology scores in the
gut, liver, and skin (Fig. 4b–d). A combination of PTCY
and KRP203 further reduced GVHD pathological scores in
the gut (Fig. 4b). Plasma levels of TNF-α on day +14 were
significantly less in mice treated with a combination of
PTCY and KRP203 than those in allogeneic mice receiving
CY alone (Fig. 5a). Donor T-cell infiltration was assessed
by flow cytometric analysis of the gut, liver, and skin on
day +15. PTCY alone significantly suppressed donor T-cell
infiltration to each organ (Fig. 5b–d). Addition of KRP203
to PTCY further reduced donor T-cell infiltration in the
colon and skin (Fig. 5b–d).

Short-term KRP203 in combination with PTCY
improved Treg reconstitution after SCT

It has been shown that Tregs play a critical role in PTCY-
mediated GVHD suppression [11, 13, 35]. On the other
hand, CNIs disturb persistence and reconstitution of Tregs
through inhibition of IL-2 [16, 17]. Administration of CY
at a dose of 50 mg/kg on day +3 significantly enhanced
reconstitution of donor CD4+FoxP3+ Tregs in the spleen
on day +21 compared to allogeneic controls and CSP-
treated mice (Supplementary Fig. 2). A combination of
PTCY and KRP203 significantly increased CD4+ FoxP3+

Tregs in the spleen on day +21 compared to PTCY alone
(Fig. 5e).

Discussion

Emerging evidences indicate that PTCY is a safe and
effective GVHD prophylaxis and has increasingly been
used in HLA-haploidentical SCT [36]. A recent clinical
study suggested that PTCY-based GVHD prophylaxis
results in better GVHD control than standard CNI-based
GVHD prophylaxis in HLA identical SCT, and this has
been tested in a prospective randomized study [37]. How-
ever, PTCY alone is not sufficient to efficiently prevent
GVHD and required additional immunosuppressants such
as CNIs [14, 38]. Tregs play an important role in tolerance
induction after SCT [11–13]. Tregs increase their expres-
sion of aldehyde dehydrogenase 2 (ALDH2) after allo-
geneic SCT and acquire resistance against PTCY-induced
apoptosis [11, 35]. Because CNIs negatively affect Treg
function by inhibiting IL-2 signaling, addition of CNIs to
PTCY possibly hampers the establishment of immune tol-
erance after SCT [16]. To avoid these adverse effects of
CNIs, CNI-free PTCY-based GVHD prophylaxis using
sirolimus or bortezomib is under development [19, 39, 40].
In the current study, we found that a novel CNI-free GVHD
prophylaxis, short-term KRP203 in combination with
PTCY reduced donor T-cell infiltration in the gut and skin,
enhanced Treg reconstitution, and ameliorated GVHD after
allogeneic SCT compared to PTCY alone.

S1PR modulator is a new class of immunosuppressants;
a first-in-class agent FTY720 having a high affinity for
S1PR1,3,4,5 has been approved by FDA for treatment of
multiple sclerosis [41, 42]. FTY720 mitigates harmful
immune responses largely but not exclusively by seques-
trating T cells in the SLOs [21, 22]. We and others have
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days 0 to +4. Survivals (b) and clinical GVHD scores (c, mean ± SD)
of these mice were shown. Data from two experiments were combined
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previously shown that FTY720-induced apoptosis of donor
T cells without interfering Treg function, resulting in
GVHD mitigation [23, 24, 43, 44]. KRP203 acts specifi-
cally on S1PR1 with a potentially milder toxicity profile.
Vascular endothelial cells express both S1PR1 and S1PR3

[45]. FTY720 antagonizes S1PR1 and S1PR3 on vascular
endothelial cells and increases vascular permeability, which
is associated with FTY720-induced adverse effects such as
macular edema [46]. KRP203 spares S1PR3 signaling in
vascular endothelial cells and thus potentially induces less
vascular adverse events compared to FTY720. Thus,
KRP203 may be a promising agent to serve as a substitute
of CNIs that is used in combination with PTCY [27, 28]. As
expected, donor T cells in the skin and gut were sig-
nificantly less in mice treated with PTCY+KRP203 than in
those treated with PTCY alone, leading to reduced patho-
logical GVHD scores in the gut. The mechanism by which
KRP203 enhanced reduction of donor T cells in the GVHD

target organs remains to be elucidated. KRP203 enhanced
activation of donor alloreactive T cells by sequestrating
donor T cells within the lymph nodes and made them more
susceptible to PTCY-induced cell death. Kataoka et al.
reported that FTY720 started from day 0, but not started
from day +2, mitigated mouse GVHD, suggesting that the
enhancement of donor T-cell trapping within the SLOs
immediately after SCT is critical for GVHD prophylaxis by
S1PR modulator [47]. In addition, S1PR modulator exerts
pro-apoptotic effects in the SLOs [48]. We confirmed that
KRP203 administrated only on day 0 to +4 was sufficient
to enhance GVHD prophylaxis of PTCY, suggesting that
this synergistic effects are not solely dependent on T-cell
sequestration [49].

In contrast to the negative impact of CNIs on Treg
reconstitution, KRP203 enhanced Treg expansion when
added to PTCY. Previous studies showed that S1P agonist
differentially affected the homing properties of Tregs
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compared to other T-cell subsets due to lower expression of
S1PR1 on Tregs. The less Treg homing to the SLOs com-
pared to conventional T cells after KRP203-treatment might
lead to less apoptosis in Tregs compared to conventional
T cells, resulted in more Treg persistence in KRP203-
treated mice [50]. FTY720 converts antigen-stimulated
conventional T cells to FoxP3+ T cells in vitro [51].
Although the mechanism by which KRP203 enhanced Treg
expansion remained to be clarified, KRP203 is a reasonable
candidate to be combined with PTCY for GVHD prophy-
laxis, in which Tregs could play a critical role for GVHD
prophylaxis [13].

We found that GVL effect was slightly impaired but not
abrogated by KRP203, while CSP profoundly attenuated
GVL effects. Our results were consistent with previous
reports showing that long-term FTY720 ameliorates GVHD
with reduced but persisting GVL effect [23, 44]. Thus,
combination of PTCY with KRP203 may have an advan-
tage to maintain GVL effect over a combination of PTCY
and CNIs.
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